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The ability to predict future events based on the past is an important attribute of
organisms that engage in adaptive behaviour. One prominent computational method
for learning to predict is called temporal-difference (TD) learning. It is so named
because it uses the difference between successive predictions to learn to predict cor-
rectly. TD learning is well suited to modelling the biological phenomenon of condi-
tioning, wherein an organism learns to predict a reward even though the reward may
occur later in time. We review a model for conditioning in bees based on TD learning.
The model illustrates how the TD-learning algorithm allows an organism to learn an
appropriate sequence of actions leading up to a reward, based solely on reinforcement
signals. The second part of the paper describes how TD learning can be used at the
cellular level to model the recently discovered phenomenon of spike-timing-dependent
plasticity. Using a biophysical model of a neocortical neuron, we demonstrate that
the shape of the spike-timing-dependent learning windows found in biology can be
interpreted as a form of TD learning occurring at the cellular level. We conclude by
showing that such spike-based TD-learning mechanisms can produce direction selec-
tivity in visual-motion-sensitive cells and can endow recurrent neocortical circuits
with the powerful ability to predict their inputs at the millisecond time-scale.
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synaptic plasticity; visual perception; prediction

1. Introduction

Learning and predicting temporal sequences from experience underlies much of adap-
tive behaviour in both animals and machines. The smell of freshly baked bread may
bring to mind the image of a loaf; the unexpected ring of a doorbell may prompt
thoughts of a salesperson at the door; the disappearance of a car behind a slow mov-
ing bus elicits an expectation of the car’s reappearance after an appropriate delay;
the initial notes from an oft-repeated Beatles song prompts a recall of the entire song.
These examples illustrate the ubiquitous nature of prediction in behaviour. Our abil-
ity to predict depends crucially on the statistical regularities that characterize the
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natural world (Atick & Redlich 1992; Barlow 1961; Bell & Sejnowski 1997; Dong &
Atick 1995; Eckert & Buchsbaum 1993; MacKay 1956; Olshausen & Field 1996; Rao
1999; Rao & Ballard 1997, 1999; Schwartz & Simoncelli 2001). Indeed, prediction
would be impossible in a world that is statistically random.

The role of prediction in behavioural learning was investigated in early psycho-
logical experiments by Pavlov and others (see Rescorla (1988) for a review). In the
famous Pavlovian conditioning experiments, a dog learned to salivate when a bell
was rung, after a training session in which an appetizing food stimulus was presented
right after the bell. The dog thus learned to predict a food reward (the unconditioned
stimulus) based on a hitherto unrelated auditory stimulus (the conditioned stimulus).
Several major areas in the brain have been implicated in the learning of rewards and
punishments, such as the dopaminergic system, the amygdala, and the cerebellum.
At a more general level, it has been suggested that one of the dominant functions of
the neocortex is prediction and sequence learning (Barlow 1998; MacKay 1956; Rao
1999; Rao & Ballard 1997, 1999).

A major challenge from a computational point of view is to devise algorithms
for prediction and sequence learning that rely solely on interactions with the envi-
ronment. Several approaches have been suggested, especially in control theory and
engineering, such as Kalman filtering, hidden Markov models, and dynamic Bayesian
networks (see Ghahramani (2001) for a review). A popular algorithm for learning
to predict is temporal-difference (TD) learning (Sutton 1988). TD learning was pro-
posed by Sutton as an ‘on-line’ algorithm for reinforcement-based learning, wherein
an agent is given a scalar reward typically after the completion of a sequence of
actions that lead to a desired goal state. The TD-learning algorithm has been enor-
mously influential in the machine learning community, with a wide variety of appli-
cations, having even produced a world-class backgammon playing program (Tesauro
1989). We review the basic TD-learning model in § 2.

TD learning has been used to model the phenomenon of conditioning wherein an
animal learns to predict a reward based on past stimuli. Sutton & Barto (1990)
studied a TD-learning model of classical conditioning. Montague et al . (1995) have
applied TD learning to the problem of reinforcement learning in foraging bees. There
is also evidence for physiological signals in the primate brain that resemble the
prediction error seen in TD learning (Schultz et al . 1997). We review some of these
results in §§ 2 and 3.

The idea of learning to predict based on the temporal difference of successive
predictions can also be applied to learning at the cellular level (Dayan 2002; Rao &
Sejnowski 2000, 2001). In § 4, we link TD learning to spike-timing-dependent synaptic
plasticity (Bi & Poo 1998; Gerstner et al . 1996; Levy & Steward 1983; Markram et al .
1997; Sejnowski 1999; Zhang et al . 1998) and review simulation results. We show that
spike-based TD learning causes neurons to become direction selective when exposed
to moving visual stimuli. Our results suggest that spike-based TD learning is a power-
ful mechanism for prediction and sequence learning in recurrent neocortical circuits.

2. Temporal-difference learning

TD learning is a popular computational algorithm for learning to predict inputs
(Montague & Sejnowski 1994; Sutton 1988). Learning takes place based on whether
the difference between two temporally separated predictions is positive or negative.
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This minimizes the errors in prediction by ensuring that the prediction generated
after adapting the parameters (for example, the synapses of a neuron) is closer to
the desired value than before.

The simplest example of a TD-learning rule arises in the problem of predicting a
scalar quantity z using a neuron with synaptic weights w(1), . . . , w(k) (represented
as a vector w). The neuron receives as presynaptic input the sequence of vectors
x1, . . . ,xm. The output of the neuron at time t is assumed to be given by Pt =∑

i w(i)xt(i). The goal is to learn a set of synaptic weights such that the prediction
Pt is as close as possible to the target z. According to the temporal-difference (TD(0))
learning rule (Sutton 1988), the weights at time t + 1 are given by

wt+1 = wt + λ(Pt+1 − Pt)xt, (2.1)

where λ is a learning rate or gain parameter and the last value of P is set to the
target value, i.e. Pm+1 = z. Note that learning is governed by the temporal difference
in the outputs at time instants t+1 and t in conjunction with the input xt at time t.

To understand the rationale behind the simple TD-learning rule, consider the
case where all the weights are initially zero, which yields a prediction Pt = 0 for
all t. However, in the last time-step t = m, there is a non-zero prediction error
(Pm+1 −Pm) = (z−0) = z. Given that the prediction error is z at the last time-step,
the weights are changed by an amount equal to λzxt. Thus, in the next trial, the
prediction Pm will be closer to z than before, and after several trials, will tend to
converge to z. The striking feature of the TD algorithm is that, because Pm acts
as a training signal for Pm−1, which in turn acts as a training signal for Pm−2 and
so on, information about the target z is propagated backwards in time such that
the predictions Pt at all previous time-steps are corrected over many trials and will
eventually converge to the target z, even though the target only occurs at the end
of the trial.

One way of to interpret z is to view it as the reward delivered to an animal at the
end of a trial. We can generalize this idea by assuming that a reward rt is delivered
at each time-step t, where rt could potentially be zero. As Sutton & Barto (1990)
originally suggested, the phenomenon of conditioning in animals can be modelled as
the prediction of the sum of future rewards in a trial, starting from the current time-
step t:

∑m
i>t ri. In other words, we want Pt =

∑
i w(i)xt(i) to approximate

∑m
i>t ri.

Note that, ideally,

Pt =
m∑

i>t

ri = rt+1 +
m∑

i>t+1

ri = rt+1 + Pt+1. (2.2)

Therefore, the error in prediction is given by

δt = rt+1 + Pt+1 − Pt (2.3)

and the weights can be updated as follows to minimize the prediction error:

wt+1 = wt + λ(rt+1 + Pt+1 − Pt)xt. (2.4)

This equation implements the standard TD-learning rule (also known as TD(0))
(Sutton 1988; Sutton & Barto 1998). Note that it depends on both the immediate
reward rt+1 and the temporal difference between the predictions at time t+1 and t.
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Considerable theory exists to show that the rule and its variants converge to the
correct values under appropriate circumstances (see Sutton & Barto 1998).

Beginning with Sutton & Barto’s early work on TD learning as a model for clas-
sical conditioning, a number of researchers have used TD learning to explain both
behavioural and neural data. One important application of TD learning has been
in interpreting the transient activity of cells in the dopamine system of primates:
the activity of many of these cells (for example, in the ventral tegmental area) is
strikingly similar to the temporal-difference error δt that would be expected during
the course of learning to predict rewards in a particular task (Schultz et al . 1995,
1997). Another demonstration of the utility of the TD-learning algorithm has been
in modelling foraging behaviour in bees. Results from this study are reviewed in the
next section.

3. TD-learning model of conditioning in bees

In addition to the sensory and motor systems that guide the behaviour of verte-
brates and invertebrates, all species also have a set of small nuclei that project
axons throughout the brain and release neurotransmitters such as dopamine, nore-
pinephrine, and acetylcholine (Morrison & Magistretti 1983). The activity in some
of these systems may report on expectation of future reward (Cole & Robbins 1992;
Schultz et al . 1995, 1997; Wise 1982). For example, honeybees can be conditioned to
a sensory stimulus such as colour, shape or smell of a flower when paired with applica-
tion of sucrose to the antennae or proboscis. An identified neuron, VUMmx1, projects
widely throughout the entire bee brain, becomes active in response to sucrose, and its
firing can substitute for the unconditioned odour stimulus in classical conditioning
experiments. A simple model based on TD learning can explain many properties of
bee foraging (Montague et al . 1994, 1995).

Real and co-workers (Real 1991; Real et al . 1990) performed a series of experi-
ments on bumble bees foraging on artificial flowers whose colours, blue and yellow,
predicted the delivery of nectar. They examined how bees respond to the mean and
variability of this delivery in a foraging version of a stochastic two-armed-bandit
problem (Berry & Fristedt 1985). All the blue flowers contained 2 µl of nectar, 1

3 of
the yellow flowers contained 6 µl, and the remaining 2

3 of the yellow flowers contained
no nectar at all. In practice, 85% of the bees’ visits were to the constant-yield blue
flowers despite the equivalent mean return from the more variable yellow flowers.
When the contingencies for reward were reversed, the bees switched their preference
for flower colour within one to three visits to flowers. Real and co-workers further
demonstrated that the bees could be induced to visit the variable and constant flow-
ers with equal frequency if the mean reward from the variable flower type was made
sufficiently high.

This experimental finding shows that bumble bees, like honeybees, can learn to
associate colour with reward. Further, colour and odour learning in honeybees has
approximately the same time course as the shift in preference described above for the
bumble bees (Gould 1987). It also indicates that under the conditions of a foraging
task, bees prefer less variable rewards and compute the reward availability in the
short term. This is a behavioural strategy used by a variety of animals under similar
conditions for reward (Krebs et al . 1978; Real 1991; Real et al . 1990), suggesting a
common set of constraints in the underlying neural substrate.
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Figure 1. Neural architecture of the bee-foraging model. During bee foraging (Real 1991), sensory
input drives the units B and Y representing blue and yellow flowers. These units project to
a reinforcement neuron P through a set of variable weights (filled circles wB and wY) and
to an action selection system. Unit S provides input to R and fires while the bee sips the
nectar. R projects its output rt through a fixed weight to P . The variable weights onto P
implement predictions about future reward rt (see text) and P ’s output is sensitive to temporal
changes in its input. The output projections of P , δt (lines with arrows), influence learning
and also the selection of actions such as steering in flight and landing, as in equation (3.2)
(see text). Modulated lateral inhibition (dark circle) in the action selection layer symbolizes
this. Before encountering a flower and its nectar, the output of P will reflect the temporal
difference only between the sensory inputs B and Y . During an encounter with a flower and
nectar, the prediction error δt is determined by the output of B or Y and R, and learning occurs
at connections wB and wY. These strengths are modified according to the correlation between
presynaptic activity and the prediction error δt produced by neuron P as in equation (3.1) (see
text). Learning is restricted to visits to flowers. (Adapted from Montague et al . (1994).)

Figure 1 shows a diagram of the model architecture, which is based on the anatomy
and physiological properties of VUMmx1. Sensory input drives the units ‘B’ and ‘Y ’
representing blue and yellow flowers. These neurons (outputs xB

t and xY
t , respectively,

at time t) project through excitatory connection weights both to a diffusely projecting
neuron P (weights wB and wY) and to other processing stages which control the
selection of actions such as steering in flight and landing. P receives additional input
rt through unchangeable weights. In the absence of nectar (rt = 0), the net input to
P becomes Pt ≡ wt · xt = wB

t xB
t + wY

t xY
t .

Assume that the firing rate of P is sensitive only to changes in its input over
time and habituates to constant or slowly varying input. Under this assumption, the
error in prediction is given by δt in equation (2.3), and the weights can be updated
according to the TD-learning rule in equation (2.4). This permits the weights onto
P to act as predictions of the expected reward consequent on landing on a flower.

When the bee actually lands on a flower and samples the nectar, R influences the
output of P through its fixed connection (figure 1). Suppose that just prior to sam-
pling the nectar the bee switched to viewing a blue flower, for example. Then, since
rt−1 = 0, δt would be rt − xB

t−1w
B
t−1. In this way, the term xB

t−1w
B
t−1 is a prediction of

the value of rt and the difference rt − xB
t−1w

B
t−1 is the error in that prediction. Adjust-

ing the weight wB
t according to the TD rule in equation (2.4) allows the weight wB

t ,
through P ’s outputs, to report to the rest of the brain the amount of reinforcement
rt expected from blue flowers when they are sensed.
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As the model bee flies between flowers, reinforcement from nectar is not present
(rt = 0) and δt is proportional to Pt − Pt−1. wB and wY can again be used as pre-
dictions but through modulation of action choice. For example, suppose the learning
process in equation (2.4) sets wY less than wB. In flight, switching from viewing
yellow flowers to viewing blue flowers causes δt to be positive and biases the activity
in any action selection units driven by outgoing connections from B. This makes the
bee more likely than chance to land on or steer towards blue flowers.

The biological assumptions of this neural architecture are explicit:

(i) the diffusely projecting neuron changes its firing according to the temporal
difference in its inputs;

(ii) the output of P is used to adjust its weights upon landing; and

(iii) the output otherwise biases the selection of actions by modulating the activity
of its target neurons.

For the particular case of the bee, both the learning rule described in equation (2.4)
and the biasing of action selection described above can be further simplified. Signifi-
cant learning about a particular flower colour only occurs in the 1–2 s just prior to an
encounter (Menzel & Erber 1978). This is tantamount to restricting weight changes
to each encounter with the reinforcer, which allows only the sensory input just pre-
ceding the delivery or non-delivery of rt to drive synaptic plasticity. We therefore
make the learning rule punctate, updating the weights on a flower by flower basis.
During each encounter with the reinforcer in the environment, P produces a predic-
tion error δt = rt − Pt−1, where rt is the actual reward at time t, and the last flower
colour seen by the bee at time t, say blue, causes a prediction Pt−1 = wB

t−1x
B
t−1 of

future reward rt to be made through the weight wB
t−1 and the input activity xB

t−1.
The weights are then updated using the TD-learning rule,

wt = wt−1 + λδtxt−1, (3.1)

where λ is the learning rate.
We model the temporal biasing of actions such as steering and landing with a

probabilistic algorithm that uses the same weights onto P to choose which flower is
actually visited on each trial. At each flower visit, the predictions are used directly
to choose an action, according to

Q(Y ) =
exp(µ(wYxY))

exp(µ(wBxB)) + exp(µ(wYxY))
, (3.2)

where Q(Y ) is the probability of choosing a yellow flower. Values of µ > 0 amplify
the difference between the two predictions, so that larger values of µ make it more
likely that the larger prediction will result in choice toward the associated flower
colour. In the limit as µ → ∞ this approaches a winner-take-all rule.

To apply the model to the foraging experiment, it is necessary to specify how
the amount of nectar in a particular flower gets reported to P . We assume that the
reinforcement neuron R delivers its signal rt as a saturating function of nectar volume
(figure 2a). Harder & Real (1987) suggest just this sort of decelerating function of
nectar volume and justify it on biomechanical grounds. Figure 2b shows the behaviour
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Figure 2. Simulations of bee foraging behaviour using TD learning. (a) Reinforcement neuron
output as a function of nectar volume for a fixed concentration of nectar (Real 1991; Real et
al . 1990). (b) Proportion of visits to blue flowers. Each trial represents approximately 40 flower
visits averaged over five real bees and exactly 40 flower visits for a single model bee. Trials 1–15
for the real and model bees had blue flowers as the constant type; the remaining trials had
yellow flowers as constant. At the beginning of each trial, wY and wB were set to 0.5, which
is consistent with evidence that information from past foraging bouts is not used (Menzel &
Erber 1978). The real bees were more variable than the model bees: sources of stochasticity
such as the two-dimensional feeding ground were not represented. The real bees also had a
slight preference for blue flowers (Menzel et al . 1974). Note the slow drop for λ = 0.1 when the
flowers are switched. (c) Method of selecting indifference points. The indifference point is taken
as the first mean for a given variance (v in the legend) for which a stochastic trial demonstrates
the indifference. This method of calculation tends to bias the indifference points to the left.
(d) Indifference plot for model and real bees. Each point represents the (mean, variance) pair
for which the bee sampled each flower type equally. The circles are for λ = 0.1 and the pluses
are for λ = 0.9. (Adapted from Montague et al . (1994).)

of model bees compared with that of real bees (Real 1991). Further details are
presented in the figure legend.

The behaviour of the model matched the observed data for λ = 0.9, suggesting that
the real bee uses information over a small time window for controlling its foraging
(Real 1991). At this value of λ, the average proportion of visits to blue was 85%
for the real bees and 83% for the model bees. The constant and variable flower
types were switched at trial 15 and both bees switched flower preference in one to
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three subsequent visits. The average proportion of visits to blue changed to 23%
and 20%, respectively, for the real and model bee. Part of the reason for the real
bees’ apparent preference for blue may come from inherent biases. Honey bees, for
instance, are known to learn about shorter wavelengths more quickly than others
(Menzel et al . 1974). In our model, the learning rate λ is a measure of the length of
time over which an observation exerts an influence on flower selection rather than
being a measure of the bee’s time horizon in terms of the mean rate of energy intake
(Real 1991; Real et al . 1990).

Real bees can be induced to forage equally on the constant and variable flower types
if the mean reward from the variable type is made sufficiently large (figure 2c, d). For
a given variance, the mean reward was increased until the bees appeared to be indif-
ferent between their choice of flowers. In this experiment, the constant flower type
contained 0.5 µl of nectar. The data for the real bee are shown as points connected
by a solid line in order to make clear the envelope of the real data. The indifference
points for λ = 0.1 (circles) and λ = 0.9 (pluses) also demonstrate that a higher value
of λ is again better at reproducing the bee’s behaviour. The model captured both
the functional relationship and the spread of the real data.

This model was implemented and tested in several ways. First, a virtual bee was
simulated foraging in a virtual field of coloured flowers. In these simulations, the field
of view of the bee was updated according to the decision rule above (equation (3.2)),
so that the bee eventually ‘landed’ on a virtual flower and the trial was repeated
(Montague et al . 1995). In a second test, an actual robot bee was constructed and
placed in the centre of a circular field. The robot bee had a camera that detected
coloured paper on the walls of the enclosure and moved toward the wall using the
above decision rule (P. Yates, P. R. Montague, P. Dayan & T. J. Sejnowski, unpub-
lished results). In each of these tests, the statistics of flower visits qualitatively con-
firmed the results shown in figure 2, despite the differences in the dynamics of the
model bees in the two circumstances. This is an important test since the complicated
contingencies of the real world, such as the slip in the wheels of the robot and random
influences that are not taken into account in the idealized simulations shown here,
did not affect the regularities in the overall behaviour that emerged from the use of
the TD-learning rule.

A similar model has been used to model the primate dopamine pathways that also
may be involved in the prediction of future reward (Montague et al . 1996; Schultz
et al . 1997). In this case, the neurons are located in the ventral tegmental area and
project diffusely through the basal ganglia and the cerebral cortex, particularly to the
prefrontal cortex, which is involved in planning actions. Thus, there is a remarkable
evolutionary convergence of reward prediction systems in animals as diverse as bees
and primates.

4. TD learning at the cellular level: spike-timing-dependent plasticity

A recently discovered phenomenon in spiking neurons appears to share some of the
characteristics of TD learning. Known as spike-timing-dependent synaptic plasticity
or temporally asymmetric Hebbian learning, the phenomenon captures the influence
of relative timing between input and output spikes in a neuron. Specifically, an
input synapse to a given neuron that is activated slightly before the neuron fires
is strengthened, whereas a synapse that is activated slightly after is weakened. The
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Figure 3. Model neuron response properties. (a) Response of a model neuron to a 70 pA current
pulse injection into the soma for 900 ms. (b) Response of the same model neuron to Pois-
son distributed excitatory and inhibitory synaptic inputs at random locations on the dendrite.
(c) Example of a back-propagating action potential in the dendrite of the model neuron as com-
pared with the corresponding action potential in the soma (enlarged from the initial portion of
the trace in (b)). (From Rao & Sejnowski (2001).)

window of plasticity typically ranges from +40 to −40 ms. Such a form of synaptic
plasticity has been observed in recurrent cortical synapses (Markram et al . 1997), in
the hippocampus (Bi & Poo 1998; Levy & Steward 1983), in the tectum (Zhang et
al . 1998), and in layer II/II of rat somatosensory cortex (Feldman 2000).

In order to ascertain whether spike-timing-dependent plasticity in cortical neu-
rons can be interpreted as a form of TD learning, we used a two-compartment
model of a cortical neuron consisting of a dendrite and a soma-axon compartment
(figure 3). The compartmental model was based on a previous study that demon-
strated the ability of such a model to reproduce a range of cortical response proper-
ties (Mainen & Sejnowski 1996). Four voltage-dependent currents and one calcium-
dependent current were simulated, as in Mainen & Sejnowski (1996): fast Na+, INa;
fast K+, IKv; slow non-inactivating K+, IKm; high voltage-activated Ca2+, ICa and
calcium-dependent K+ current, IKCa. The following active conductance densities were
used in the soma-axon compartment (in pS µm−2): ḡNa = 40 000 and ḡKv = 1400.
For the dendritic compartment, we used the following values: ḡNa = 20, ḡCa = 0.2,
ḡKm = 0.1, and ḡKCa = 3, with leak conductance 33.3 µS cm−2 and specific mem-
brane resistance 30 kΩ cm−2. The presence of voltage-activated sodium channels in
the dendrite allowed back propagation of action potentials from the soma into the
dendrite as shown in figure 3c.

Conventional Hodgkin–Huxley-type kinetics were used for all currents (integration
time-step, 25 µs; temperature, 37 ◦C). Ionic currents I were calculated using the
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ohmic equation
I = ḡAxB(V − E), (4.1)

where ḡ is the maximal ionic conductance density, A and B are activation and inacti-
vation variables, respectively (x denotes the order of kinetics; see Mainen & Sejnowski
1996), and E is the reversal potential for the given ion species (EK = −90 mV,
ENa = 60 mV, ECa = 140 mV, Eleak = −70 mV). For all compartments, the spe-
cific membrane capacitance was 0.75 µF cm−2. Two key parameters governing the
response properties of the model neuron are (Mainen & Sejnowski 1996) the ratio of
axo-somatic area to dendritic membrane area (ρ) and the coupling resistance between
the two compartments (κ). For the present simulations, we used the values ρ = 150
(with an area of 100 µm2 for the soma-axon compartment) and a coupling resistance
of κ = 8 MΩ. Poisson-distributed synaptic inputs to the dendrite (see figure 3b) were
simulated using alpha-function-shaped (Koch 1999) current pulse injections (time
constant 5 ms) at Poisson intervals with a mean presynaptic firing frequency of 3 Hz.

To study plasticity, excitatory postsynaptic potentials (EPSPs) were elicited at
different time delays with respect to postsynaptic spiking by presynaptic activation
of a single excitatory synapse located on the dendrite. Synaptic currents were calcu-
lated using a kinetic model of synaptic transmission with model parameters fitted to
whole-cell recorded AMPA (a-amino 3-hydroxy 5-methylisoxazole 4-proprionic acid)
currents (see Destexhe et al . (1998) for more details). Synaptic plasticity was simu-
lated by incrementing or decrementing the value for maximal synaptic conductance
by an amount proportional to the temporal difference in the postsynaptic membrane
potential at time instants t + ∆t and t for presynaptic activation at time t. The
delay parameter ∆t was set to 10 ms to yield results consistent with previous phys-
iological experiments (Bi & Poo 1998; Markram et al . 1997). Presynaptic input to
the model neuron was paired with postsynaptic spiking by injecting a depolarizing
current pulse (10 ms, 200 pA) into the soma. Changes in synaptic efficacy were mon-
itored by applying a test stimulus before and after pairing, and recording the EPSP
evoked by the test stimulus.

Figure 4 shows the results of pairings in which the postsynaptic spike was triggered
5 ms after and 5 ms before the onset of the EPSP, respectively. While the peak EPSP
amplitude was increased by 58.5% in the former case, it was decreased by 49.4% in
the latter case, qualitatively similar to experimental observations (Bi & Poo 1998;
Markram et al . 1997). The critical window for synaptic modifications in the model
depends on the parameter ∆t as well as the shape of the back-propagating action
potential (AP). This window of plasticity was examined by varying the time-interval
between presynaptic stimulation and postsynaptic spiking (with ∆t = 10 ms). As
shown in figure 4c, changes in synaptic efficacy exhibited a highly asymmetric depen-
dence on spike timing similar to physiological data (Markram et al . 1997). Potenti-
ation was observed for EPSPs that occurred between 1 and 12 ms before the post-
synaptic spike, with maximal potentiation at 6 ms. Maximal depression was observed
for EPSPs occurring 6 ms after the peak of the postsynaptic spike and this depres-
sion gradually decreased, approaching zero for delays greater than 10 ms. As in rat
neocortical neurons (Markram et al . 1997), Xenopus tectal neurons (Zhang et al .
1998), and cultured hippocampal neurons (Bi & Poo 1998), a narrow transition zone
(roughly 3 ms in the model) separated the potentiation and depression windows.
The stability of this spike-based TD rule is analysed in Rao & Sejnowski (2001). It is
shown that the stability of the TD-learning rule for spike-timing-dependent synaptic
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Figure 4. Synaptic plasticity in a model neocortical neuron. (a) EPSP in the model neuron
evoked by a presynaptic spike (S1) at an excitatory synapse (‘before’). Pairing this presynaptic
spike with postsynaptic spiking after a 5 ms delay (‘pairing’) induces long-term potentiation
(‘after’). (b) If presynaptic stimulation (S2) occurs 5 ms after postsynaptic firing, the synapse
is weakened, resulting in a corresponding decrease in peak EPSP amplitude. (c) Temporally
asymmetric window of synaptic plasticity obtained by varying the delay between pre- and post-
synaptic spiking (negative delays refer to presynaptic before postsynaptic spiking). (From Rao
& Sejnowski (2001).)

plasticity depends crucially on whether the temporal window parameter ∆t is com-
parable in magnitude to the width of the back-propagating AP at the location of the
synapse. An upper bound on the maximal synaptic conductance may be required to
ensure stability in general (Abbott & Song 1999; Gerstner et al . 1996; Song et al .
2000). Such a saturation constraint is partly supported by experimental data (Bi &
Poo 1998). An alternative approach that might be worth considering is to explore
a learning rule that uses a continuous form of the TD error, where, for example,
an average of postsynaptic activity is subtracted from the current activity (Doya
2000; Montague & Sejnowski 1994). Such a rule may offer better stability properties
than the discrete TD rule that we have used, although other parameters, such as
the window over which average activity is computed, may still need to be carefully
chosen.

(a) Biophysical mechanisms for spike-based TD learning

An interesting question is whether a biophysical basis can be found for the TD-
learning model described above. Neurophysiological and imaging studies suggest a
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role for dendritic Ca2+ signals in the induction of spike-timing-dependent long-term
potentiation (LTP) and long-term depression (LTD) in hippocampal and cortical
neurons (Koester & Sakmann 1998; Magee & Johnston 1997; Paulsen & Sejnowski
2000). In particular, when an EPSP preceded a postsynaptic action potential, the
Ca2+ transient in dendritic spines, where most excitatory synaptic connections occur,
was observed to be larger than the sum of the Ca2+ signals generated by the EPSP
or AP alone, causing LTP; on the other hand, when the EPSP occurred after the AP,
the Ca2+ transient was found to be a sublinear sum of the signals generated by the
EPSP or AP alone, resulting in LTD (Koester & Sakmann 1998; Linden 1999; Paulsen
& Sejnowski 2000). Possible sources contributing to the spinous Ca2+ transients
include Ca2+ ions entering through NMDA (N-methyl-D-aspartate) receptors (Bliss
& Collingridge 1993; Koester & Sakmann 1998), voltage-gated Ca2+ channels in
the dendrites (Schiller et al . 1998), and calcium release from intracellular stores
(Emptage 1999).

How do the above experimental observations support the TD model? In a recent
study (Franks et al . 1999), a Monte Carlo simulation program MCell (Stiles et al .
2000) was used to model the Ca2+ dynamics in dendritic spines following pre- and
postsynaptic activity, and to track the binding of Ca2+ to endogenous proteins. The
influx of Ca2+ into a spine is governed by the rapid depolarization pulse caused by
the back-propagating AP. The width of the back-propagating AP is much smaller
than the time course of glutamate binding to the NMDA receptor. As a result, the
dynamics of Ca2+ influx and binding to calcium-binding proteins such as calmodulin
depends highly nonlinearly on the relative timing of presynaptic activation (with
release of glutamate) and postsynaptic depolarization (due to the back-propagating
AP). In particular, due to its kinetics, the binding protein calmodulin could serve
as a differentiator of intracellular calcium concentration, causing synapses to either
potentiate or depress depending on the spatio-temporal profile of the dendritic Ca2+

signal (Franks et al . 1999). As a consequence of these biophysical mechanisms, the
change in synaptic strength depends, to a first approximation, on the time derivative
of the postsynaptic activity, as postulated by the TD model.

(b) Learning to predict using spike-based TD learning

Our results suggest that spike-timing-dependent plasticity in neocortical synapses
can be interpreted as a form of TD learning for prediction. To see how a network
of model neurons can learn to predict sequences using such a learning mechanism,
consider the simple case of two excitatory neurons, N1 and N2, connected to each
other, receiving inputs from two separate input neurons, I1 and I2 (figure 5a). Model
neuron parameters were the same as those used in § 4. Suppose input neuron I1 fires
before input neuron I2, causing neuron N1 to fire (figure 5b). The spike from N1
results in a sub-threshold EPSP in N2 due to the synapse S2. If input arrives from I2
between 1 ms and 12 ms after this EPSP and if the temporal summation of these two
EPSPs causes N2 to fire, synapse S2 will be strengthened. The synapse S1, on the
other hand, will be weakened, because the EPSP due to N2 arrives a few milliseconds
after N1 has fired.

After several exposures to the I1–I2 training sequence, when I1 causes neuron N1 to
fire, N1 in turn causes N2 to fire several milliseconds before input I2 occurs due to the
potentiation of the recurrent synapse S2 in previous trials (figure 5c). Input neuron I2
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Figure 5. Learning to predict using spike-based TD learning. (a) Network of two model neurons
N1 and N2 recurrently connected via excitatory synapses S1 and S2, with input neurons I1 and
I2. N1 and N2 inhibit the input neurons via inhibitory interneurons (filled circles). (b) Network
activity elicited by the sequence I1 followed by I2. (c) Network activity for the same sequence
after 40 trials of learning. Due to strengthening of recurrent synapse S2, recurrent excitation
from N1 now causes N2 to fire several ms before the expected arrival of input I2 (dashed line),
allowing it to inhibit I2 (asterisk). Synapse S1 has been weakened, preventing re-excitation of
N1 (downward arrows show decrease in EPSP). (From Rao & Sejnowski (2001).)

can thus be inhibited by the predictive feedback from N2 just before the occurrence of
imminent input activity (marked by an asterisk in figure 5c). This inhibition prevents
input I2 from further exciting N2, thereby implementing a negative feedback-based
predictive coding circuit (Rao & Ballard 1999). Similarly, a positive feedback loop
between neurons N1 and N2 is avoided because the synapse S1 was weakened in
previous trials (see arrows in figure 5b, c, top row). Figure 6a depicts the process
of potentiation and depression of the two synapses as a function of the number of
exposures to the I1-I2 input sequence. The decrease in latency of the predictive
spike elicited in N2 with respect to the timing of input I2 is shown in figure 6b.
Notice that before learning the spike occurs 3.2 ms after the occurrence of the input
whereas after learning, it occurs 7.7 ms before the input. Although the postsynaptic
spike continues to occur shortly after the activation of synapse S2, this synapse is
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Figure 6. Synaptic strength and latency reduction due to learning. (a) Potentiation and depres-
sion of synapses S1 and S2, respectively, during the course of learning. Synaptic strength was
defined as maximal synaptic conductance in the kinetic model of synaptic transmission (Des-
texhe et al . 1998). (b) Latency of predictive spike in N2 during the course of learning measured
with respect to the time of input spike in I2 (dotted line). (From Rao & Sejnowski (2001).)

prevented from assuming larger values due to a saturation constraint of 0.03 µS on
the maximal synaptic conductance (see above for a discussion of this constraint).

(c) Prediction, visual motion detection and direction selectivity

In related work (Rao & Sejnowski 2000), we have shown how spike-based TD learn-
ing can explain the development of direction selectivity in recurrent cortical networks,
yielding receptive field properties similar to those observed in awake monkey V1. We
first simulated a simple motion detection circuit consisting of a single chain of nine
recurrently connected excitatory cortical neurons (figure 7a). Each neuron in the
chain initially received symmetric excitatory and inhibitory inputs of the same mag-
nitude (maximal synaptic conductance 0.003 µS) from its preceding and successor
neurons (figure 7b, ‘before learning’). Excitatory and inhibitory synaptic currents
were calculated using kinetic models of synaptic transmission based on properties of
AMPA and GABAA (γ-aminobutyric acid A) receptors as determined from whole-
cell recordings (see Destexhe et al . 1998). Neurons in the network were exposed to
100 trials of retinotopic sensory input consisting of moving pulses of excitation in the
rightward direction (5 ms pulse of excitation at each neuron). These inputs, which
approximate the depolarization caused by retinotopic inputs from the LGN (lateral
geniculate nucleus), were sufficient to elicit a spike from each neuron.

The effects of spike-timing-dependent learning on the excitatory and inhibitory
synaptic connections in the network are shown in figure 7b (‘after learning’). There
is a profound asymmetry in the developed pattern of excitatory connections from
the preceding and successor neurons to neuron 0 in figure 7b. The synaptic conduc-
tances of excitatory connections from the left-side have been strengthened, while the
ones from the right-side have been weakened. This result can be explained as fol-
lows: due to the rightward motion of the input stimulus, neurons on the left side fire
(on average) a few milliseconds before neuron 0, while neurons on the right side fire
(on average) a few milliseconds after neuron 0; as a result, the synaptic strength of
connections from the left side are increased, while the synaptic strength for connec-
tions from the right side are decreased, as prescribed by the spike-timing-dependent
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Figure 7. Emergence of direction selectivity in the spike-based TD-learning model. (a) Schematic
depiction of recurrent connections to a given neuron (labelled ‘0’) from four preceding and four
successor neurons in its chain. (b) Synaptic strength of recurrent excitatory and inhibitory
connections to neuron 0 before and after learning. Note the symmetry in connections before
learning and the asymmetry in connections after spike-timing-dependent learning. Synapses
were adapted during 100 trials of exposure to rightward moving stimuli. (c) Direction-selective
response of neuron 0 to rightward moving stimuli after learning. Due to recurrent excitation
from preceding neurons, the neuron starts firing a few milliseconds before the expected arrival
time of its input (marked by an asterisk). The black triangle represents the time at which the
input stimulus begins its rightward motion.

learning window in figure 4c. The opposite pattern of connectivity develops for the
inhibitory connections because these were modified according to an asymmetric anti-
Hebbian learning rule that reversed the polarity of the rule in figure 4c. Such a rule
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is consistent with spike-timing-dependent anti-Hebbian plasticity observed in some
classes of inhibitory interneurons (Bell et al . 1997). Alternatively, one could keep the
level of inhibition constant (for example, at 0.015 µS) and obtain qualitatively similar
results because a decrease in the strength of the corresponding excitatory connec-
tions, as shown in figure 7b, would again tilt the balance in favour of inhibition on
the right side of neuron 0.

The responses of neuron 0 to rightward and leftward moving stimuli are shown in
figure 7c. As expected from the learned pattern of connections, the neuron responds
vigorously to rightward motion but not to leftward motion. Similar responses selec-
tive for rightward motion were exhibited by the other neurons of which the network
is composed. More interestingly, each neuron fires a few milliseconds before the time
of arrival of the input stimulus at its soma (marked by an asterisk) due to recurrent
excitation from preceding neurons. Such predictive neural activity is characteristic
of temporally asymmetric learning rules (see, for example, Abbott & Blum 1996;
Rao & Sejnowski 2001). In contrast, motion in the non-preferred direction triggered
recurrent inhibition and little or no response from the model neurons.

(i) Detecting multiple directions of motion

To investigate the question of how selectivity for different directions of motion
may emerge simultaneously, we simulated a network comprising two parallel chains
of neurons (see figure 8a), each containing 55 neurons, with mutual inhibition (black
arrows) between corresponding pairs of neurons along the two chains. As in the pre-
vious simulation, a given excitatory neuron received both excitation and inhibition
from its predecessors and successors, as shown in figure 8b for a neuron labelled
‘0’. Inhibition at a given neuron was mediated by an inhibitory interneuron (black
circle) which received excitatory connections from neighbouring excitatory neurons
(figure 8b, lower panel). The interneuron received the same input pulse of excita-
tion as the nearest excitatory neuron. Maximum conductances for all synapses were
initialized to small positive values (dotted lines in figure 8c). To break the sym-
metry between the two chains, one may: (i) select small randomly chosen values
for the synaptic conductances in the two chains, or (ii) provide a slight bias in the
recurrent excitatory connections, so that neurons in one chain may fire slightly ear-
lier than neurons in the other chain for a given motion direction. Both alternatives
succeed in breaking symmetry during learning. We report here the results for alter-
native (ii), which is supported by experimental evidence indicating the presence of a
small amount of initial direction selectivity in cat visual cortical neurons before eye
opening (Movshon & Sluyters 1981).

To evaluate the consequences of spike-based TD learning in the two-chain network,
model neurons were exposed alternately to leftward- and rightward-moving stimuli
for a total of 100 trials. The excitatory connections (labelled ‘EXC’ in figure 8b)
were modified according to the TD-learning rule in figure 4c, while the excitatory
connections onto the inhibitory interneuron (labelled ‘INH’) were modified according
to the asymmetric anti-Hebbian learning rule, as in the previous simulation. The
synaptic conductances learned by two neurons (marked N1 and N2 in figure 8a)
located at corresponding positions in the two chains after 100 trials of exposure to
the moving stimuli are shown in figure 8c (solid line). The excitatory and inhibitory
connections to neuron N1 exhibit a marked asymmetry, with excitation originating
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Figure 8. Detecting multiple directions of motion. (a) A model network consisting of two chains
of recurrently connected neurons receiving retinotopic inputs. A given neuron receives recurrent
excitation and recurrent inhibition (white-headed arrows) as well as inhibition (black-headed
arrows) from its counterpart in the other chain. (b) Recurrent connections to a given neuron
(labelled ‘0’) arise from four preceding and four succeeding neurons in its chain. Inhibition at
a given neuron is mediated via a GABAergic interneuron (black circle). (c) Synaptic strength
of recurrent excitatory (EXC) and inhibitory (INH) connections to neurons N1 and N2 before
(dotted lines) and after learning (solid lines). Synapses were adapted during 100 trials of expo-
sure to alternating leftward and rightward moving stimuli. (d) Responses of neurons N1 and N2
to rightward- and leftward-moving stimuli. After learning, neuron N1 has become selective for
rightward motion (as have other neurons in the same chain), while neuron N2 has become selec-
tive for leftward motion. In the preferred direction, each neuron starts firing several milliseconds
before the input arrives at its soma (marked by an asterisk) due to recurrent excitation from
preceding neurons. The black triangle represents the start of input stimulation in the network.

from neurons on the left and inhibition from neurons on the right. Neuron N2 exhibits
the opposite pattern of connectivity.

As expected from the learned pattern of connectivity, neuron N1 was found to
be selective for rightward motion, while neuron N2 was selective for leftward motion
(figure 8d). Moreover, when stimulus motion is in the preferred direction, each neuron
starts firing a few milliseconds before the time of arrival of the input stimulus at its
soma (marked by an asterisk) due to recurrent excitation from preceding neurons.
Conversely, motion in the non-preferred direction triggers recurrent inhibition from
preceding neurons as well as inhibition from the active neuron in the corresponding
position in the other chain. Thus, the learned pattern of connectivity allows the
direction selective neurons comprising the network to conjointly code for and predict
the moving input stimulus in each possible direction of motion.
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Figure 9. Comparison of monkey and model space-time response plots to single flashed bars.
(a) Sequence of PSTHs obtained by flashing optimally oriented bars at 20 positions across the
5◦-wide receptive field (RF) of a complex cell in alert monkey V1 (from Livingstone 1998).
The cell’s preferred direction is from the part of the RF represented at the bottom towards the
top. Flash duration, 56 ms; inter-stimulus delay, 100 ms; 75 stimulus presentations. (b) PSTHs
obtained from a model neuron after stimulating the chain of neurons at 20 positions to the
left and right side of the given neuron. The lower PSTHs represent stimulations on the pre-
ferred side, while upper PSTHs represent stimulations on the null side. (c) Interpretation of
the space-time plots in the model. Bars flashed on the left (preferred) side of the recorded cell
(shaded) cause progressively greater excitation as the stimulation site approaches the recorded
cell’s location. Bars flashed to the right of the cell cause inhibition due to the predominantly
inhibitory connections that develop on the right (null) side during learning.

(ii) Comparison with awake-monkey complex-cell responses: first-order analysis

Like complex cells in the primary visual cortex, model neurons were found to be
direction selective throughout their receptive field. This phase-invariant direction
selectivity is a consequence of the fact that at each retinotopic location, the corre-
sponding neuron in the chain receives the same pattern of asymmetric excitation and
inhibition from its neighbours as any other neuron in the chain. Thus, for a given
neuron, motion in any local region of the chain will elicit direction-selective responses
due to recurrent connections from that part of the chain. This is consistent with pre-
vious modelling studies (Chance et al . 1999), suggesting that recurrent connections
may be responsible for the spatial-phase invariance of complex-cell responses.

The model predicts that the neuro-anatomical connections for a direction selective
neuron should exhibit a pattern of asymmetrical excitation and inhibition similar to
figure 8c. A recent study of complex cells in awake monkey V1 found excitation on
the preferred side of the receptive field and inhibition on the null side, consistent

Phil. Trans. R. Soc. Lond. A (2003)



Self-organizing neural systems 1167

with the pattern of connections learned by the model (Livingstone 1998). In this
study, optimally oriented bars were flashed at random positions in a cell’s receptive
field, and a reverse correlation map was calculated from a record of eye position,
spike occurrence and stimulus position. Figure 9a depicts an eye-position corrected
reverse correlation map for a complex cell, with time on the x-axis and stimulus
position on the y-axis: each row of the map is the post-stimulus time histogram of
spikes elicited for a bar flashed at that spatial position. The map thus depicts the
firing rate of the cell as a function of the retinal position of the stimulus and time
after stimulus onset.

For comparison with these experimental data, spontaneous background activity
in the model was generated by incorporating Poisson-distributed random excitatory
and inhibitory alpha synapses on the dendrite of each model neuron. As shown in
figure 9a, b, there is good qualitative agreement between the space-time response plot
for the direction-selective complex cell and that for the model. Both space-time plots
show a progressive shortening of response onset time and an increase in response
transiency going in the preferred direction: in the model, this is due to recurrent
excitation from progressively closer cells on the preferred side. Firing is reduced to
below background rates 40–60 ms after stimulus onset in the upper part of the plots:
in the model, this is due to recurrent inhibition from cells on the null side. The
response transiency and shortening of response time course appears as a slant in
the space-time maps, but unlike space-time maps in simple cells, this slant cannot
be used to predict the neuron’s velocity preference (see Livingstone (1998) for more
details). However, assuming a 200 µm separation between excitatory model neurons
in each chain and using known values for the cortical magnification factor in monkey
striate cortex (Tootell et al . 1988), one can estimate the preferred stimulus velocity
of model neurons to be in the range of 3.1◦ s−1 in the fovea and 27.9◦ s−1 in the
periphery (at an eccentricity of 8◦), which is within the range of monkey V1 velocity
preferences (1–32◦ s−1) (Livingstone 1998; Van Essen 1985).

(iii) Comparison with awake-monkey complex-cell responses: second-order analysis

Complex cells are known to exhibit higher-order interactions between two succes-
sively presented stimuli. For example, the response to two bars presented sequentially
at two different positions is generally not a linear function of the responses to the
bars presented individually. In the case of the model network, we would expect the
asymmetry in synaptic connections to give rise to nonlinear facilitation if the two
bars are flashed along the preferred direction relative to each other and a reduction
in response for bars flashed in the opposite direction (see figure 10a).

To study such two-bar interactions in complex cells in awake monkey V1, single
bars of optimal orientation were flashed within a direction-selective cell’s receptive
field at a series of locations along the dimension perpendicular to stimulus orien-
tation (these experiments were conducted in Margaret Livingstone’s laboratory at
Harvard Medical School). A continuous record was kept of eye position (at 250 Hz),
spike occurrence (1 ms resolution), and stimulus position. A reverse correlation analy-
sis was performed, after correcting for eye position, to produce two-bar interaction
maps as shown in figure 10b. These maps show how the response to one stimulus
is influenced by a preceding stimulus, as a function of the two stimulus locations.
Thus, for each of the plots shown, the y-axis represents the spatial position of bar 1,
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Figure 10. Two-bar interactions. (a) Model predictions for sequential presentation of two opti-
mally oriented bars. Black arrowheads represent inhibitory connections. Facilitation is predicted
when spatial position of bar 1 is greater than that of bar 2 (relative motion in the preferred
direction); a reduction in response is expected when position of bar 2 is higher than that of
bar 1 due to recruitment of inhibition. (b) Sequential two-bar interaction maps for a direction
selective complex cell in awake monkey V1. The maps show the percent difference in response
after subtracting the average responses to the individual bars from the cell’s two-bar response.
(c) Two-bar interaction maps for the model network. Note the slightly different scale bar for
model data, compared with the experimental data. Both model and experimental data show
qualitatively similar sequential interactions consistent with the expectations in (a), namely,
facilitation (red) for spatial points above the diagonal (bar 1 position higher than bar 2 posi-
tion) and a reduction in response (blue) for points close to and below the diagonal.

while the x-axis represents the position of bar 2, which was flashed after an inter-
stimulus-interval (ISI) of 56 ms after bar 1. The four plots represent the evolution
of the cell’s response to the two-bar sequence at delays of 25 ms, 50 ms, 75 ms, and
100 ms, respectively, after the onset of bar 2. The average responses for the individual
bars were subtracted from each of the plots to show any facilitation or reduction in
responses due to sequential interactions.
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Facilitation (red) can be observed above the diagonal line for all four plots in
figure 10b. Locations above the diagonal represent cases where the two-bar sequence
is flashed in the preferred direction of the cell (see figure 10a). A reduction in the
cell’s response (blue) occurs at longer delays, predominantly at positions below the
diagonal. This is consistent with the model predictions sketched in figure 10a. A
repetition of the two-bar experiment in the model yielded interaction plots that were
qualitatively similar to the physiological data (figure 10c). The main differences are
in the time-scale and magnitude of facilitation/reduction in the responses, both of
which could be fine-tuned, if necessary, by adjusting model parameters such as the
maximal allowed synaptic conductance, synaptic delays and the number of neurons
used in the simulated network.

5. Discussion

Several theories of prediction and sequence learning in the brain have been proposed,
based on statistical and information theoretic ideas (Abbott & Blum 1996; Barlow
1998; Daugman & Downing 1995; Dayan & Hinton 1996; Minai & Levy 1993; Mon-
tague & Sejnowski 1994; Rao & Ballard 1999). The bee-foraging model illustrates
the utility of the TD model in understanding how animals learn to predict at the
behavioural level. Our biophysical simulations suggest a possible implementation of
TD-like models in cortical circuitry. Given the universality of the problem of encoding
and generating temporal sequences in both sensory and motor domains, the hypoth-
esis of TD-based sequence learning in recurrent neocortical circuits may help provide
a unifying principle for studying prediction and learning at both the behavioural and
the cellular levels.

Other researchers have suggested temporally asymmetric Hebbian learning as a
possible mechanism for sequence learning in the hippocampus (Abbott & Blum
1996; Minai & Levy 1993) and as an explanation for the asymmetric expansion
of hippocampal place fields during route learning (Mehta et al . 1997). Some of these
models used relatively long temporal windows of synaptic plasticity, of the order of
several hundreds of milliseconds (Abbott & Blum 1996), while others used temporal
windows in the submillisecond range for coincidence detection (Gerstner et al . 1996).
Sequence learning in our spike-based TD model is based on a window of plasticity
that spans ca.±20 ms, which is roughly consistent with recent physiological obser-
vations (Markram et al . 1997; see also Abbott & Song 1999; Mehta & Wilson 2000;
Roberts 1999; Song et al . 2000; Westerman et al . 1999).

(a) Predictions of the spike-based TD-learning model

The spike-timing-dependent TD-learning model makes several predictions that
could potentially be tested in future experiments. First, it is known that the shape
and size of back-propagating APs at different locations in a cortical dendrite depends
on the distance of the dendritic location from the soma. For example, as back-
propagating APs progress from the soma to the distal parts of a dendrite, they
tend to become broader than more proximal parts of the dendrite. This is shown in
figure 11 for a reconstructed layer-5 neocortical neuron (Douglas et al . 1991) from
cat visual cortex with ionic channels based on those used for this neuron in the study
by Mainen & Sejnowski (1996).
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Figure 11. Dependence of learning window on synaptic location. Size and shape of a
back-propagating AP at different dendritic locations in a compartmental model of a recon-
structed layer-5 neocortical neuron. The corresponding TD-learning windows for putative
synapses at these dendritic locations is shown on the right. Note the gradual broadening of
the learning window in time as one progresses from proximal to distal synapses. (From Rao &
Sejnowski (2001).)

Since synaptic plasticity in our model depends on the temporal difference in post-
synaptic activity, the model predicts that synapses situated at different locations
on a dendrite should exhibit different temporally asymmetric windows of plasticity.
This is illustrated in figure 11 for the reconstructed model neuron. Learning windows
were calculated by applying the temporal-difference operator to the back-propagating
APs with ∆t = 2 ms. The model predicts that the window of plasticity for dis-
tal synapses should be broader than for proximal synapses. Having broader windows
would allow distal synapses to encode longer time-scale correlations between pre- and
post-synaptic activity. Proximal synapses would encode correlations at shorter time-
scales due to sharper learning windows. Thus, by distributing its synapses through-
out its dendritic tree, a cortical neuron could in principle capture a wide range of
temporal correlations between its inputs and its output. This would in turn allow
a network of cortical neurons to accurately predict sequences and reduce possible
ambiguities such as aliasing between learned sequences by tracking the sequence at
multiple time-scales (Rao 1999; Rao & Ballard 1997).

The temporal-difference model also predicts asymmetries in size and shape between
the LTP and LTD windows. For example, in figure 11, the LTD window for the two
apical synapses (labelled (a) and (b)) is much broader and shallower than the cor-
responding LTP window. Such an asymmetry between LTP and LTD has recently
been reported for synapses in rat primary somatosensory cortex (S1) (Feldman 2000).
In particular, the range of time delays between pre- and postsynaptic spiking that
induces LTD was found to be much longer than the range of delays that induces
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LTP, generating learning windows similar to the top two windows in figure 11. One
computational consequence of such a learning window is that synapses that elicit
subthreshold EPSPs in a manner uncorrelated with postsynaptic spiking will, over
time, become depressed. In rat primary somatosensory cortex, plucking one whisker
but sparing its neighbour causes neuronal responses to the deprived whisker in layer
II/III to become rapidly depressed. The asymmetry in the LTP/LTD-learning win-
dows provides an explanation for this phenomenon: spontaneously spiking inputs
from plucked whiskers are uncorrelated with postsynaptic spiking and, therefore,
synapses receiving these inputs will become depressed (Feldman 2000). Such a mech-
anism may contribute to experience-dependent depression of responses and related
changes in the receptive field properties of neurons in other cortical areas as well.

(b) Future work

The precise biophysical mechanisms underlying spike-timing-dependent TD-learn-
ing remain unclear. However, as discussed in § 4 a, calcium fluctuations in dendritic
spines are known to be strongly dependent on the timing between pre- and post-
synaptic spikes. Such calcium transients may cause, via calcium-mediated signaling
cascades, asymmetric synaptic modifications that are dependent, to a first approx-
imation, on the temporal derivative of postsynaptic activity. An interesting topic
worthy of further investigation is therefore the development of more realistic imple-
mentations of TD learning based on, for instance, the temporal derivative of post-
synaptic calcium activity, rather than the temporal difference in postsynaptic mem-
brane potential as modelled here.

An alternate approach to analysing spike-timing-dependent learning rules is to
decompose an observed asymmetric learning window into a TD component plus
noise, and to analyse the noise component. However, the advantage of our approach
is that one can predict the shape of plasticity windows at different dendritic loca-
tions based on an estimate of postsynaptic activity, as described in § 5 a. Conversely,
given a particular learning window, one can use the model to explain the temporal
asymmetry of the window as a function of the neuron’s postsynaptic activity profile.

6. Conclusions

In this article, we have shown that two types of learning that have been consid-
ered quite different in character—classical conditioning and unsupervised learning in
cortical neurons—may be reflections of the same underlying learning algorithm oper-
ating on different time-scales. The key to understanding this similarity is that they
both make predictions about future states of the world. In the case of classical condi-
tioning, the prediction is of future rewards. In the case of the cortex, the prediction is
of the next location of a moving object. In both cases, temporal order is an important
clue to causality. This type of learning rule was foreshadowed in Hebb’s influential
book The organization of behaviour, which contains the following statement.

When an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased.

(Hebb 1949, p. 62)
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Thus, Hebb had already anticipated the spike-timing-dependent version of synaptic
plasticity that has recently been discovered in the cortex, and also realized that the
principle of causality embodied in this learning rule could be exploited, in a manner
later formalized by TD learning, to help self-organize complex systems in the brain
(Sejnowski 1999).
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